Unsupervised Alignment of Natural Language with Video

نویسندگان

  • Iftekhar Naim
  • Jiebo Luo
  • Liang Huang
چکیده

Today we encounter large amounts of video data, often accompanied with text descriptions (e.g., cooking videos and recipes, videos of wetlab experiments and protocols, movies and scripts). Extracting meaningful information from these multimodal sequences requires aligning the video frames with the corresponding sentences in the text. Previous methods for connecting language and videos relied on manual annotations, which are often tedious and expensive to collect. In this thesis, we focus on automatically aligning sentences with the corresponding video frames without any direct human supervision. We first propose two hierarchical generative alignment models, which jointly align each sentence with the corresponding video frames, and each noun in a sentence with the corresponding object in the video frames. Next, we propose several latent-variable discriminative alignment models, which incorporate rich features involving verbs and video actions, and outperform the generative models. Our alignment algorithms are primarily applied to align biological wetlab videos with text instructions. Furthermore, we extend our alignment models for automatically aligning movie scenes with associated scripts and learning word-level translations between language pairs for which bilingual training data is unavailable. Thesis: By exploiting the temporal ordering constraints between video and associated text, it is possible to automatically align the sentences in the text with the corresponding video frames without any direct human supervision.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discriminative Unsupervised Alignment of Natural Language Instructions with Corresponding Video Segments

We address the problem of automatically aligning natural language sentences with corresponding video segments without any direct supervision. Most existing algorithms for integrating language with videos rely on handaligned parallel data, where each natural language sentence is manually aligned with its corresponding image or video segment. Recently, fully unsupervised alignment of text with vi...

متن کامل

Unsupervised Alignment of Actions in Video with Text Descriptions

Advances in video technology and data storage have made large scale video data collections of complex activities readily accessible. An increasingly popular approach for automatically inferring the details of a video is to associate the spatiotemporal segments in a video with its natural language descriptions. Most algorithms for connecting natural language with video rely on pre-aligned superv...

متن کامل

Unsupervised Alignment of Natural Language Instructions with Video Segments

We propose an unsupervised learning algorithm for automatically inferring the mappings between English nouns and corresponding video objects. Given a sequence of natural language instructions and an unaligned video recording, we simultaneously align each instruction to its corresponding video segment, and also align nouns in each instruction to their corresponding objects in video. While existi...

متن کامل

Unsupervised Alignment for Segmental-based Language Understanding

Recent years’ most efficient approaches for language understanding are statistical. These approaches benefit from a segmental semantic annotation of corpora. To reduce the production cost of such corpora, this paper proposes a method that is able to match first identified concepts with word sequences in an unsupervised way. This method based on automatic alignment is used by an understanding sy...

متن کامل

Action Change Detection in Video Based on HOG

Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015